高光譜成像儀高光譜圖像降維方法介紹
發(fā)布時間:2023-12-07
瀏覽次數(shù):464
高光譜成像儀?在對樣本進行掃描時,可以獲得樣本的高光譜圖像數(shù)據(jù),但由于高光譜數(shù)據(jù)量過大,會降低后期的數(shù)據(jù)處理速度,并且波段較多,光譜信息之間相關性很強,使得三維數(shù)據(jù)塊之間存在大量冗余信息,可能影響建模結果,因此就需要進行降維處理。本文對高光譜成像儀高光譜圖像降維方法做了介紹。
高光譜成像儀在對樣本進行掃描時,可以獲得樣本的高光譜圖像數(shù)據(jù),但由于高光譜數(shù)據(jù)量過大,會降低后期的數(shù)據(jù)處理速度,并且波段較多,光譜信息之間相關性很強,使得三維數(shù)據(jù)塊之間存在大量冗余信息,可能影響建模結果,因此就需要進行降維處理。本文對高光譜成像儀高光譜圖像降維方法做了介紹。
高光譜數(shù)據(jù)是一個三維數(shù)據(jù)塊,不僅可以提取每個像元的光譜信息,而且每個波長都對應一幅灰度圖像。但是,對于分辨率較高的高光譜數(shù)據(jù),每個數(shù)據(jù)塊就包含上百幅圖像信息,數(shù)據(jù)量過大,會降低后期的數(shù)據(jù)處理速度,并且波段較多,光譜信息之間相關性很強,使得三維數(shù)據(jù)塊之間存在大量冗余信息,可能影響建模結果。因此,在數(shù)據(jù)處理過程中,高光譜數(shù)據(jù)的降維是減小噪聲,提高模型識別速率和識別準確率的有效手段。目前的主要的降維方法有以下兩種:
1.主成分分析(PCA)
主成分分析(PCA)是被較多應用的一種數(shù)據(jù)降維方法。PCA變換是將有相關性的原始變量沿協(xié)方差最大的方向投影,使經過坐標變換的高維空間數(shù)據(jù)映射到低維空間,得到線性不相關的新變量,即主成分。主成分按照方差從大到小的順序依次稱為第一主成分(PC1)、第二主成分(PC2),以此類推。原始高光譜數(shù)據(jù)經過PCA變換,可以看作各個主成分圖像的線性組合,主成分圖像所占原始圖像信息的比重由方差貢獻率決定。一般,當主成分的累計貢獻率達到一定比例,如85%以上,即可解釋大部分高光譜數(shù)據(jù)信息。因此,經過PCA變換的高光譜數(shù)據(jù)僅需少量主成分就可以極大程度上表征原始信息,大大減少了數(shù)據(jù)處理時間,并消除原始數(shù)據(jù)之間冗余的信息。
2.最小噪聲分離變換(MNF)
對于高光譜數(shù)據(jù)降維,最小噪聲分離變換(MNF變換)的主要目的在于分離高光譜數(shù)據(jù)的信號和噪聲,提高信噪比。該算法可以看作是兩次主成分變換的疊加。首先,基于圖像噪聲的協(xié)方差矩陣進行正向變換,然后,對多維圖像去相關、重定標。變換之后的數(shù)據(jù)關聯(lián)到兩個部分:一個部分是較大特征值,及其特征圖像;另一個部分則是較小特征值,及其噪聲圖像。特征值的大小決定特征圖像的信噪比高低,用來確定有效的特征圖像。最后,正向變換后確定的圖像子集被作標準主成分變換,恢復為對應的原始圖像。MNF將噪聲比例大的圖像排除,使有效的高光譜數(shù)據(jù)量大幅度上漲。
相關產品
-
高光譜知識:高光譜圖像處理技術
高光譜圖像處理技術是一種集圖像與光譜信息于一體的高分辨率技術,廣泛應用于航天、農業(yè)、食品安全、醫(yī)學診斷及工業(yè)分類質檢等領域,展現(xiàn)出強大的應用潛力和價值。..
-
高光譜成像技術方案怎么選擇?
探索高光譜成像技術,精準檢測水果品質,從源頭把控,讓每一顆果實都展現(xiàn)最佳風味!..
-
基于多種光學技術的食品無損檢測:保障食品安全質量
隨著科技的發(fā)展,如今有了更先進的食品檢測方法,其中基于光學的不同波段檢測方法結合光譜技術大放異彩。這些方法包括可見光、紅外、太赫茲以及 X 射線等波段的檢測,它..
-
高光譜成像技術在紡織品回收分類中的應用
利用高光譜相機對紡織品進行分類以便回收,在眾多節(jié)約和減少浪費的努力中,紡織品仍然是最大的挑戰(zhàn)之一。只有 15% 被回收和再利用,而其余 85% 最終被填埋。紡織..