性高朝久久久久久久齐齐_久久精品卫校国产小美女_中文无码av一区二区三区_久久精品人人看人人爽_思思99思思久久最新精品

020-8288 0288

肉類摻雜摻假的高光譜成像檢測研究

發(fā)布時間:2023-06-27
瀏覽次數(shù):730

肉類主要包括畜肉、禽肉及魚蝦蟹貝類等,其營養(yǎng)物質(zhì)豐富,是人類蛋白質(zhì)、脂肪、維生素等必需物質(zhì)的優(yōu)質(zhì)來源。隨著消費者生活水平的提高及飲食結(jié)構(gòu)的改變,動物源蛋白質(zhì)在飲食中比例逐年提升。

肉類主要包括畜肉、禽肉及魚蝦蟹貝類等,其營養(yǎng)物質(zhì)豐富,是人類蛋白質(zhì)、脂肪、維生素等必需物質(zhì)的優(yōu)質(zhì)來源。隨著消費者生活水平的提高及飲食結(jié)構(gòu)的改變,動物源蛋白質(zhì)在飲食中比例逐年提升。20世紀90年代以來,世界人口對于肉類的消費量增長迅猛,僅2000—2015年即由22 499.8萬t增加到31 928.4萬t,年均增長達2.4%。在巨大商業(yè)利益驅(qū)使下,如2013年“馬肉風波”與2017年巴西腐肉等事件,以假亂真、以次充好的肉類摻雜摻假現(xiàn)象屢見不鮮。這些不法行為不僅對消費者健康與切身利益造成威脅,甚至對整個行業(yè)的健康發(fā)展造成不良影響,已成為全球普遍關注的公共問題。因此,建立快速準確的肉類摻雜摻假檢測機制對于肉類品質(zhì)及安全的有效監(jiān)管尤為重要。目前,將高光譜成像技術應用于肉類摻雜摻假檢測中可以實現(xiàn)樣品無損、準確以及快速檢測,已成為食品、農(nóng)產(chǎn)品檢測應用領域的一個重要研究方向。


1.肉類摻雜摻假檢的測研究現(xiàn)狀


肉類摻雜摻假形式多種多樣,且更具技術化及隱形化,常見的形式主要包括4種:(1)冒充:使用價格低廉的肉類充當高價肉,如鴨肉或者雞肉冒充牛羊肉等;(2)替換:利用冷藏的同種肉類替換鮮肉,如變質(zhì)肉、僵尸肉等;(3)混入:一般借助肉糜破壞纖維形態(tài)結(jié)構(gòu),將廉價劣質(zhì)肉類或內(nèi)臟混入原料肉中以掩人耳目,如肉餡中摻入血脖肉、碎內(nèi)臟等;(4)添加:通過添加非肉源性物質(zhì)實現(xiàn)增重、著色、提味等目的,如“注膠蝦”、“注水肉”、肉中摻入大豆蛋白等。然而,在GB 2760—2011《食品安全國家標準食品添加劑使用標準》中明文規(guī)定禁止這種添加行為。肉類的摻雜摻假在健康、道德、宗教和經(jīng)濟等方面對消費者構(gòu)成了嚴重威脅。因此,消費者對肉類進行檢測以獲得實際信息的需求和意愿逐年上漲。

依靠感官或形態(tài)學的傳統(tǒng)檢測方式存在主觀性強及易誤判等弊端。目前,客觀儀器分析技術主要包括聚合酶鏈式反應(polymerase chain reaction, PCR)法、電泳分析法、質(zhì)譜分析法、酶聯(lián)免疫吸附測定(enzyme linked immunosorbent assay, ELISA)法、色譜分析法、元素分析和同位素分析法等。它們雖然具有較好的重復性及檢測精度,但具有破壞性、需專業(yè)人士操作、費時費力、需復雜前處理等缺陷,很難實現(xiàn)大樣本量的現(xiàn)場快速檢測。近年來快速光譜檢測技術在肉類摻雜摻假檢測中已展現(xiàn)出巨大潛力,如拉曼光譜、激光誘導擊穿光譜、太赫茲光譜、紫外-可見光譜、近紅外光譜、中紅外光譜和傅里葉變換紅外光譜等,但摻假分布并不一定均勻,單或多點檢測不能充分代表整個樣品信息,且不具備令其“快速現(xiàn)形”的能力。高光譜成像技術(hyperspectral imaging, HSI)可以同時獲取被測目標光譜和圖像信息,其光譜信息能夠鑒定內(nèi)部有機物化學成分。通過獲取的圖像信息可以很好地反映樣品中復雜的非均質(zhì)特征信息,滿足快速檢測以及可視化等需求。


2.高光譜成像的基本原理與數(shù)據(jù)解析


2.1 高光譜成像技術

高光譜成像技術是融合光學、電子學、計算機科學、信息處理以及統(tǒng)計學等領域的光電檢測技術,主要應用于如森林探火、地質(zhì)勘探以及海洋監(jiān)測等航空遙感領域,正逐步在農(nóng)業(yè)、食品、環(huán)境、工業(yè)、醫(yī)藥等領域快速地發(fā)展應用。高光譜圖像數(shù)據(jù)采集包括點掃描、線掃描和面掃描3種(圖1-a),點掃描:逐像素采集光譜后進行拼接,常見于微觀尺度掃描檢測中;線掃描:逐行掃描獲取每一行像素點光譜并逐行拼接,線掃描尤其適合傳送裝置上動態(tài)檢測,也是食品農(nóng)產(chǎn)品檢測的常用模式;面掃描在光譜維逐波長對圖像依次掃描拼接,一般用于少波長多光譜成像系統(tǒng)中。高光譜圖像不僅包括樣品二維空間信息(x,y),還具有隨波長分布的每個像素點的光譜信息(λ),最終獲得立方體數(shù)據(jù)(x,y,λ),如圖1-b。較之傳統(tǒng)機器視覺以及近紅外光譜,高光譜可同時獲取目標更為豐富的內(nèi)部生化及外部物理結(jié)構(gòu)等信息。

肉類摻雜摻假的高光譜成像檢測研究進展

a-高光譜圖像采集模式;b-高光譜圖像數(shù)據(jù)立方體示意圖

圖1 高光譜成像技術的數(shù)據(jù)采集

2.2 高光譜數(shù)據(jù)的前處理

原始高光譜圖像經(jīng)過黑白校正后,為去除背景、邊緣等像素點光譜信息,常利用高反射率波段圖像扣除低反射率波段圖像得到波段運算圖像,并結(jié)合合適閾值提取部分像素點生成感興趣區(qū)域(region of interest, ROI)。ROI中平均光譜最終作為每個樣品的光譜,用于后續(xù)分析研究,也有部分研究通過PC變換、點云分布、圖像增強等方法獲取ROI提取光譜信息。為消除無用信息和環(huán)境條件及儀器所帶來的圖譜噪聲,卷積平滑、導數(shù)以及標準正態(tài)變量變換等都常用于光譜的預處理。高光譜提取出的光譜數(shù)據(jù)量龐大,存在大量的冗余信息,需要進行有用信息的提取以縮減計算。文獻中的系列特征變量提取方法包括:競爭性自適應加權(quán)、連續(xù)投影、無信息變量消除、回歸系數(shù)、主成分載荷、二維相關光譜、野草算法以及遺傳算法等。

2.3 模型的建立與評價

模型是數(shù)據(jù)分析研究工作中重要的內(nèi)容,肉類摻雜摻假的高光譜信息作為自變量對應摻入梯度作為因變量,突出其內(nèi)在線性或非線性聯(lián)系,構(gòu)建定性判別或定量預測模型,預測后續(xù)未知樣本,并基于預測結(jié)果給予模型優(yōu)劣的評價。如偏最小二乘回歸(partial least squares regression, PLSR)、逐步回歸(stepwise regression, SR)等定量預測模型方法以及線性判別分析(linear discriminant analysis, LDA)和支持向量機(support vector machine, SVM)等定性判別方法均得到了廣泛應用。目前應用包括卷積神經(jīng)網(wǎng)絡(convolutional neural networks, CNN)、遞歸神經(jīng)網(wǎng)絡以及無監(jiān)督的預培訓網(wǎng)絡等深度學習方法自動提取特征,也是當前模型建立中的熱點。建立模型評價要有真實摻假梯度與預測值之間的相關系數(shù)(R)以及決定系數(shù)(R2)、均方根誤差(RMSE)、剩余預測偏差等,一般模型預測集誤差越小,相關或決定系數(shù)

02

越大,總體模型性能越好,訓練集與預測集的評價參數(shù)越接近說明模型越穩(wěn)定。

檢測限(limit of detection, LOD)是衡量某一種檢測技術方法能力的重要指標,部分檢測研究中會進行LOD計算以評價高光譜成像技術結(jié)合化學計量學建模方法的靈敏度。對牛肉糜中摻入鴨肉糜的高光譜成像進行檢測,LOD為7.59%。應用高光譜成像對摻入牛肉糜中3種大豆蛋白進行檢測,LOD達到0.53%、0.58%和1.02%。對摻入豬肉中血脖肉含量進行高光譜成像檢測,LOD限達6.50%??紤]到肉類摻雜摻假均是以盈利為目的,一般摻假比例都會高于10%,使用高光譜成像在肉類摻雜摻假檢測中是實際可行的。

2.4 高光譜數(shù)據(jù)的后處理

與傳統(tǒng)的近紅外光譜相比,高光譜成像的主要優(yōu)勢在于能夠反映空間分布信息,建立簡化的多變量模型可以預測多光譜圖像每個像素點的值,以達到觀測整個圖像品質(zhì)或化學成分分布的目的。而摻雜摻假情況一般用肉眼是難以觀測到的,為了快速直觀地觀察肉類摻雜摻假的空間分布,研究人員一般將優(yōu)選的簡化模型應用到特征波長下的多光譜圖像中,預測每個像素點的摻雜摻假情況,最終得到可視化的預測分布圖,給清晰直觀地展示出摻雜摻假狀況提供了一種方法。


3.肉類摻雜摻假高光譜檢測研究進展


3.1 冒充和替換

使用不同產(chǎn)地、種屬、狀態(tài)的肉類進行冒充或替換是不法商家常用的手段,目前常通過動物源成分或某一指標如揮發(fā)性鹽基氮、細菌總數(shù)及水分含量等進行檢測鑒別。利用近紅外波段(900~1 700 nm)高光譜成像技術對豬、牛、羊3類紅肉進行整塊類別劃分,選取6個波長結(jié)合PLS-DA建模方法得到識別總準確率為98.67%。將新鮮、冷凍、解凍、包裝和非包裝多種形式豬、牛、羊肉拼接,利用HSI結(jié)合深度CNN得到了總體94.4%的劃分準確率。最近研究發(fā)現(xiàn)快照HSI結(jié)合3D-CNN同樣可以獲取96.9%以上準確率,這為未來便攜儀器開發(fā)及實時獲取紅肉真?zhèn)涡畔⑻峁┛赡堋HA南理工大學XIONG等[29]分別提取散養(yǎng)雞和肉雞肉高光譜主成分得分圖像的光譜和圖像紋理信息,圖譜信息結(jié)合利用SVM建模最優(yōu)判別準確率達93.33%。采集銀川、固原、鹽池3個產(chǎn)地羊肉高光譜圖像,發(fā)現(xiàn)CARS提取波長結(jié)合PLS-DA建模方法得到的預測集準確率最高為84.21%。對荷斯坦牛、秦川牛、西門塔爾牛3種牛肉高光譜圖像數(shù)據(jù)進行采集分析,結(jié)果顯示CARS提取波長結(jié)合SVM建模預測集準確率為98.82%。綜上,對于此類肉類冒充和替換,高光譜成像可以較好地識別和劃分(準確率>84%),以往對于肉類冒充和替換案例中,不同肉類蛋白質(zhì)的不同吸收帶是光譜檢測能力的最大貢獻來源,未來還可以結(jié)合點云或顯微尺度進行信息挖掘,以達到進一步提升識別精度和模型穩(wěn)定性的目的。

3.2 混入

混入的檢測研究目前較多,常見于肉糜狀態(tài)下的混入檢測。肉糜是最受歡迎的形式之一,是多類肉制品的主要成分,如漢堡、餡餅、肉丸、香腸以及包子、餃子和餛飩?cè)怵W等。由于肉糜消除了基本的形態(tài)差異和特征,消費者難以通過感官觀測出異樣,因此原料肉糜中常被混入廉價肉糜牟取利益。表1就肉糜混入的高光譜檢測研究進行了總結(jié),所有研究中模型的預測精度均很高,高光譜成像檢測具有巨大應用潛力。表中大部分研究利用包含可見光的400~1 000 nm波段,原因是借助不同肉類血紅蛋白和肌紅蛋白含量以及結(jié)構(gòu)差異對光散射的影響完成檢測鑒別。

表1 高/多光譜成像在廉價肉混入原料肉檢測的應用

03

3.3 非肉源添加物

非肉源添加物大部分是為增重牟利,常見的如注入食用膠溶液、大豆蛋白等,雖然少量添加物能提升肉類的質(zhì)地和流變特性并改善其口感,但過多添加一方面嚴重侵犯了消費者權(quán)益,另一方面因人體腸胃無法吸收,長期食用會阻礙營養(yǎng)物質(zhì)吸收,很容易造成營養(yǎng)不良,更嚴重的會引起強烈的過敏癥狀。許多國家對于此類添加物有明確規(guī)定,如巴西法律規(guī)定漢堡中大豆蛋白添加量不能超過7.5%。檢測肉制品中未聲明的非肉源添加物具有很重要的現(xiàn)實意義,相關研究結(jié)果匯總?cè)绫?所示。而此類物質(zhì)相比于肉類摻假因具有不同的蛋白質(zhì)、碳水化合物以及水分含量等,因此更易被高光譜檢測出來。

表2 高光譜成像檢測肉類中非肉源添加物的方法比較

04


4.前景與展望


肉類產(chǎn)品長期面臨著不法商家各類摻雜摻假問題,基于高光譜成像技術的快速檢測是可行的,但肉類摻雜摻假現(xiàn)象多種多樣、層出不窮,目前數(shù)據(jù)挖掘、模型建立以及商業(yè)化應用基礎還不夠系統(tǒng)、成熟。首先,不應僅針對某一種現(xiàn)象進行研究,未來還需有針對性的圖譜數(shù)據(jù)融合以及人工智能深度學習算法的嘗試,深度挖掘指示各類肉品的指紋特征,篩選出適用于檢測多種或某一類摻雜摻假的數(shù)據(jù)信息;其次,目前構(gòu)建模型的數(shù)據(jù)庫還是研究者自行構(gòu)建,模型穩(wěn)健性還不夠,模型的優(yōu)化更新還需要巨大樣本量數(shù)據(jù)庫補充,距離商業(yè)化應用還有一段距離;再次,超立方體高光譜數(shù)據(jù)較大,圖像和光譜處理速度慢,開發(fā)經(jīng)濟簡單的數(shù)據(jù)處理方法和低成本、易操作、少變量的多光譜系統(tǒng)是未來發(fā)展的重點;最后,仍需通過優(yōu)化應用條件,建立應用方法,研發(fā)配套大型裝備或小型便攜設備,最終為我國肉類摻雜摻假現(xiàn)象的快速實時檢測鑒別提供關鍵技術與裝備,以提升監(jiān)管水平。

聯(lián)系我們

Contact us
廣東賽斯拜克技術有限公司
  • 地址:廣州市增城區(qū)新城大道400號智能制造中心33號樓601
  • 電話:020-8288 0288   13500023589
  • 郵箱:3nh@3nh.com
  • 網(wǎng)址:http://www.udagawajidousya.com
Copyright © 2024 廣東賽斯拜克技術有限公司 版權(quán)所有
  • 公司聯(lián)系方式
    QQ
  • 網(wǎng)站首頁
    首頁
  • 公司聯(lián)系電話
    電話
  • 返回
    返回頂部